Année 2022-2023
SESSION DE JANVIER 2023

Épreuve de : Advanced graph theory
Date : 13 janvier 2023-9h
Durée : 1h30
Épreuve de : F. Dross et F. Kardoš

```
All documents authorized.
All answers must be justified.
```


1 Graph homomorphisms

Let D denote the graph of a diamond - the graph obtained from K_{4} by removing an edge.
1.1) Prove that $G \rightarrow D$ if and only if $G \rightarrow K_{3}$.
1.2) Find a characterisation of graphs such that $D \rightarrow G$.

2 Outerplanar graphs

2.1) Recall the definition of an outerplanar graph.
2.2) Prove that every outerplanar graph contains a vertex of degree (at most) 2 .
2.3) Prove that the treewidth of an outerplanar graph is (at most) 2.
2.4) Prove that every outerplanar graph is 3-choosable.
2.5) Is it true that every 2-degenerate graph has treewidth at most 2?

3 Random graphs

We would like to generate a random tree. We want to show that the Erdős-Rényi model $\mathcal{G}(n, p)$ (where every edge appears with probability p independently from the others) is not a good model for that.
3.1) For a fixed p, what is the expected number of edges of $\mathcal{G}(n, p)$? For which value of p (depending on n) this expected number corresponds to the number of edges of a tree?
3.2) Let p_{0} be the answer to the previous question. Let X_{i} be the binary random variable indicating whether the vertex v_{i} is an isolated one in $\mathcal{G}\left(n, p_{0}\right)$; let X denote the number of isolated vertices in $\mathcal{G}\left(n, p_{0}\right)$. Calculate the expectation of X (by first expliciting $E\left(X_{i}\right)$. What is the asymptotics of $E(X)$?
3.3) What can we say about the probability that $\mathcal{G}\left(n, p_{0}\right)$ is a tree (knowing that for $n>1$ a tree has no isolated vertices)?

4 Vertex arboricity

The vertex arboricity of a graph $G=(V, E)$ is the minimum number k of sets V_{1}, \ldots, V_{k} such that $V=V_{1} \cup V_{2} \cdots \cup V_{k}$, and for all integer $1 \leq i \leq k$, the induced subgraph of G with vertex set V_{i} is a forest (i.e. has no cycle).
4.1) Fix an integer t. Can you find an upper bound on the highest possible value of the vertex arboricity of a graph G with $\chi(G)=t$, in terms of t (and not in terms of n)?
4.2) Prove that there exists a constant C such that every planar graph has vertex arboricity at most C. We do not ask for the best possible such constant.
4.3) What is the vertex arboritity of the complete graph K_{n} in terms of n ?
4.4) Fix an integer t. What is the lowest possible value of the vertex arboricity of a graph G with $\chi(G)=t$?
4.5) Prove that every planar graph has vertex arboricity at most 3 .

